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Dynamics of the Even-Binomial State in Some 
Quantum System 
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The effect of the even-binomial state (the state which interpolates between the 
even-number state and the even-coherent state) on the Jaynes-Cummings model 
and resonance fluorescence for a single atom and for many cooperative atoms 
is discussed. The study of two quantum optical systems in such a state provides 
more insight into the continuous passage from the even-number state to the 
even-coherent state. The squeezing phenomenon and the correlation functions 
are examined. 

1. I N T R O D U C T I O N  

The most familiar state for the electromagnetic field is the Fock number 
state In), which is an eigenstate of the photon number operator. Vigorous 
effort is being made to realize this state experimentally, for example, through 
atoms passing a quantized standing wave. Thus the momentum distribution 
of the outgoing atoms is sensitive to photon statistics for a small number of 
photons. Continual probing of the cavity by successive atoms results in the 
complete collapse of the field state to that of a number state (Holland et  al., 
1991; Walls and Milburn, 1994). 

A more appropriate basis for many optical applications is provided by 
the coherent states (Glauber, 1963). They are the closest quantum states to 
the classical description of the field realized in highly stabilized laser fields 
operating well above threshold (Sargent et  al., 1974). Another set of states 
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consists of the squeezed states, which are minimum-uncertainty states (Yuen, 
1976; Caves, 1981; Caves and Schumaker, 1985; Walls, 1986). These states 
have been generated experimentally through many schemes. 4 

There has been increased interest in studying combinations of these 
states. Some of these combinations interpolate between the Fock and coherent 
states. Such a state is the binomial state introduced by Stoler et  al. (1985). 
A scheme for its production is given in Datoli et  al. (1987). Another, intro- 
duced to bridge the thermal and coherent states, is the negative binomial 
state (Joshi and Lawande, 1989, 1991; Agarwal, 1992). The route from 
number to thermal states is provided by the generalized geometric state 
(Obada et  al., 1993; Batarfi et al., 1995). Even- and odd-coherent states have 
been introduced to investigate the role of interference between coherent states 
(Gerry, 1993; Bu~.ek and Knight, 1991; Bu~.ek et aL, 1990, 1991; Hillery, 
1987b; Vogel and Risken, 1990; Pei-ina, 1984; Sun et  al., 1991, 1992). 
Recently the even-binomial state has been introduced to interpolate between 
the even-number and even-coherent states (Abdalla et  al., 1994). It was 
reported that under suitable conditions, superposition of coherent states can 
be produced if a coherent state is allowed to propagate through an amplitude 
dispersive medium (Yurk and Stoler, 1986). Thus quantum superposition of 
binomial states can be produced in the same way, since the binomial state 
tends to a coherent state as a limiting case. Further, a method discussed 
recently (Gerry, 1992) to produce such a superposition through a Kerr medium 
in a Mach-Zehnder interferometer can be used to generate even-binomial 
states. The state that has been introduced takes the form 

[M/21 [ M ~1/2 
Ill/e) = ~ Z {2//} TI2n(~/1 - - 1 ~ [ 2 )  (M-2n)12n) ( I )  

n=O \ / 

with [M/2] being the largest integer less than or equal to M / 2  and ~/ is a 
normalizing constant given by 

I'yI 2 = 211 + (1 - 21"qlZ)M] -t (1') 

In the limiting case when "q ---> 0 and M --> oo such that M I "ql 2 ---> I cxl 2, 
equation (I) reduces to 

I~e) = (sechlal2) 1/2 
(X 2n 

,=o ~ 12n} (2) 

which represents the even-coherent state (Gerry, 1993; Bu~.ek and Knight, 
1991; Bu~.ek et  al., 1990, 1992; Hillery, 1987b; Vogel and Risken, 1990; 
Peiina, 1984; Sun et  al., 1991, 1992). 

4See the July 1987 issue of Journal of Modern Optics, Vol. 34, and the October 1987 issue 
of Journal of the Optical Socie~. of America B. 



D y n a m i c s  of  the Even-B inomia l  State 1395 

In earlier work our concentration was on the statistical properties of 
the state, where we discussed in particular both the Glauber second-order 
correlation function and the squeezing phenomenon. We showed that for a 
certain value of the parameters M and "q, antibunching and squeezing proper- 
ties are exhibited. We also examined the quasi-probability distribution, W- 
Wigner, and Q-functions for this state, and discussed the connection to the 
even-coherent state. In the present work we extend the discussion to include 
some dynamical systems, namely the Jaynes and Cummings (1963) model 
and resonance fluorescence for a single atom and many cooperative atoms 
(Mollow, 1969), and we discuss the gradual behavior for the state of the 
radiation field when it changes from the even-number state to the even- 
coherent state. We point out that the Jaynes-Cummings model of a two-level 
atom interacting with a single mode of the electromagnetic field which 
describes the fundamental Bose-Fermi interaction is interesting not only from 
the theoretical point of view but also the experimental, since the availability of 
high-Q superconducting cavities at sub-Kelvin temperature makes it possible 
to realize it (Meschede et al., 1985; Rempe et al., 1987). In this case there 
is only one Rydberg atom interacting with one single mode of radiation, and 
the system in this case is known as a micromaser, which in general can be 
modeled by the Jaynes and Cummings (1963) model. 

2. THE J A Y N E S - C U M M I N G S  M O D E L  

The simplest form of interaction between a two-level atom and a single 
quantized mode of the electromagentic field in the case of resonance is 
described by the Hamiltonian 

H = to(a*a + �89 + k(ator_ + aor+) (3) 

where h denotes the coupling between the atom and the field, and a and a t 
are the boson annihilation and creation operators of the field, with [a, a t] = 
1; orz, or_, and or+ are the atomic pseudo-spin operators, with [or., or_] = orz 
and [or_+, orz] = -7-2or_+. 

Now suppose we prepare the atom to be initially in the excited state l e> 
and the field to be initially in the even binomial state; then we find the initial 
atom-field state is the product of the atomic superposition states given by 

[/14/21 
I*(0)) = 3, ~] BMle, 2n> 

n=O 

where B~ is the distribution of the photons defined as 
. .1/2 

(4) 

(4') 
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For t > 0 the state I t~(t)) in the interaction picture may be obtained from 
the Hamiltonian (3) in the form 

[/14/2] 

I~(t)) = ~/ ~ B~,,[cos "rv/~ + 112n, e) - i sin -rv/~ + 112n (5) 
n =0 

+ 1, g)] 

where "r = ht. From equation (5) we can easily obtain the expectation value 
for any atomic or field operator. For example, we can calculate the temporal 
evolution for (a*) z~ to give 

(a,Z,> I~ 12-q* ~ 
; o   2,JL(M- 2 n -  2s) j 

X (1 -- Ixll2){M-2n)Icos-r~/2n + 2s -F 1 cos- r ,d~  + 1 
i 

+ ( 2 n 2 n +  + 2s 1 + 1) I/2 

x sin "rx/2n + 2s + 1 sin " r ~ ]  (6) 

and the calculation of the expectation value of the photon number N = 
ata gives 

[M/21 

(fi) = I'yI 2 ~ IB~_,lZ(2n + sin2"rv/~ + 1) (6') 
n = 0  

Note that the expectation value of any odd power as well as any power higher 
than M for the operators a and a t vanishes due to the nature of the even 
binomial state. The nonclassical effects of the above system will be considered 
in the following section. 

3. NONCLASSICAL EFFECTS 

In this section we use the results obtained in the previous section to 
discuss higher order squeezing phenomena (amplitude-squared squeezing) as 
well as the correlation function. 

3.1. Amplitude-Squared Squeezing 

The phenomenon of squeezing is distinguished by the property that the 
quantum fluctuations in one of the field quadratures is smaller than those 



Dynamics of the Even-Binomial State 1397 

associated with the coherent states of light. In fact this phenomenon has been 
extended to higher order squeezing. The concept of higher order squeezing 
has been discussed by many authors (Hong and Mandel, 1985a,b) and in this 
subsection we discuss the production of higher order squeezing in the sense of 
Hillery's (1987a,b) definition. This type of  squeezing is known as amplitude- 
squared squeezing, and arises in a natural way in second-harmonic generation 
and in a number of nonlinear optical processes. This phenomenon is defined 
through the fluctuations in the operators 

1 at 2 d I = ~ -+- a 2) (7a) 

i (at2 _ a2 ) (7b) d2 = 

These operators satisfy the commutation relation 

[dr, d2] = i[1 + 2/(/] (8) 

The field is said to be in amplitude-squared squeezed state if 

A2dl or A2d2 < �89 + 0~0 (9) 

Equation (9) can be rewritten in terms of  a and a t as follows (Mahran and 
Obada, 1989): 

Sl(t) = �88 + 2(1~/) + ((a t4 + a4}) - {(a t2 + a2)2}] < 0 (10a) 

and 

S2(t) = �88 + 2(/(0 + ((a t4) + {a4}) - ((a .2 - a2)2)1 < 0 (lOb) 

where 

[M/2] 

n=0 
IB~1214n 2 + (4n + 1) sin2'rx/2n + 1] (10c) 

In Fig. 1 we plot the amplitude-squared squeezing against the scaled time 'r. 
At time 'r > 0 we observe that nonclassical negative values appear in the X 
component of  equation (10) which, corresponding to St or $2, depends upon 
the phase of the parameter "q. From Fig. 1, for a fixed mean photon number 

= 5, it is easy to realize in general that for short and long periods of time 
the amplitude-squared squeezing is pronounced, but this depends on the value 
of the parameters "q and M. We have illustrated three different cases. The 
first one is M = 10 and "1 = 0.7, and the other two cases are M = 20 and 
xl = 0.5, and M = 30 and ~q = 0.4. The observed amount of amplitude- 
squared squeezing for both short and long time intervals is more pronounced 
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Fig. 1. The amplitude-squared squeezing equation (10a) versus the time for n = 5 and 

different values of M, ~. 

for the case M = 10, xl = 0.7 than that for the other two cases.  We also observe 
that, as the value o f  the parameter M increases and the parameter -q decreases, 
the system approaches the even-coherent-state behavior and this can be noticed 
for the case M = 30, lq = 0.4. Finally, as stated in Abdalla et al. (1994), normal 
squeezing is observed at t = 0; however,  in the present case at t > 0 the normal 
squeezing is washed out. This is due to the highly noisy character o f  the state 
produced during the interaction. We also point out that at t = 0 the observed 
amount of  amplitude-squared squeezing is much larger than that observed for 
t > 0 in the present case, and this also is due to the noise that appeared during 
the course of  interaction. Furthermore, our numerical investigation for the case 
when the initial mean photon number ~ = 2 with M = 30 and "q = 0.3 shows 
that no normal squeezing can be observed, while there is a small amount of  
amplitude-squared squeezing for both short and long time intervals. 

3.2. Sub-Po i s son ian  Dis tr ibut ions  

We turn our attention to the Glauber second-order correlation function 
g(2)(t), which is defined as 

g(2)(t) = (/~-(t)) - (/~/(t)) 
(]~(t))2 (11) 
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Fig. 2. The second-order correlation function g(2)(t)[(gl'-)(t) + 0.5] for M = 20 and [gC2~(t) 

+ 1.0] for M = 30 versus the time for the same values of ~ as in Fig. I. 

The field is said to be sub-Poissonian if the correlation function gC2~(t) is less 
than unity and super-Poissonian if gt2~(t) > I. In Fig. 2 we plot the time 
evolution of the function g(2~(t) > 1 against the time 'r with the mean photon 
number ~ = 5 and for different values of M and x I. We notice that the function 
g~Z~(t) in general shows oscillation behavior. Accordingly, as we increase the 
value of M, the correlation functions starts to oscillate between sub-Poissonian 
and super-Poissonian behavior (see, for example, M = 30). On the other 
hand, the distribution function starts to be super-Poissonian for small values 
of v 1 and large values of  M. This of  course is due to the fact that the even 
binomial state will tend to the even-coherent state as r I ---> 0 and M ---> oc. 
Finally, we observed in both cases M = 10 and M = 20 that the state is 
antibunched. However, we can see more antibunched for lower M and this 
indicates that the system approaches the even-number state as the value of 
the parameter is decreasing. For the case of  M = 30 the state is oscillating 
between bunching and antibunching. 

4. R E S O N A N C E  F L U O R E S C E N C E  

This phenomenon concerns a radiatively decaying two-level atomic 
system coupled to an external radiation field in free space. The steady-state 
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regime (i.e., t --> ~)  is considered here. We consider especially the cases of 
a single atom (N -- l) and the thermodynamic limit in the cooperative many- 
atom system in which N --> oo. 

4.1. Single Atom 

When the external field is described in a single-mode-number state, we 
find in the steady state that the mean atomic inversion for a single two-level 
atom is given by (Hassan et al., 1990) 

1 (__)m n! b2m _ 2 n (S:(oo)>n = - ~  m=0 (n -- m)! = ( b )  L . ( - " - ' ) ( -b  -2) (12) 

where b z = 2h-2gZ/(5 z + �88 g is the coupling constant and F is the A- 
coefficient; 5 is the frequency detuning between the atomic transition fre- 
quency and that of  the field, and E.a)(x) is the generalized Laguerre polynomial. 

From the even-binomial state defined by equation (1), we get the follow- 
ing expression for the mean atomic inversion: 

[M/2I 
(Sz(~176 = s P2n('q, M)<S:(~176 (13) 

where 

n=0 

P2.(Xl, M) = 1(2nlqJe) l 2 

= l~/12 2n!(At--  2n)! 1 - I 'ql2/ (1 - IlqlZ) M 

The result (13) can be rearranged and summed to take the form 

< S z ( o o ) > E B  _ 2 2 [(b2lx112)MLM M-l(_b21,q I 2) 

(14) 

4.2. The Thermodynamic Limit (N ---> ~)  

In the case of  the N-cooperative-atom resonance fluorescence and in 
the limit N ---> oo, the scaled atomic inversion at exact resonance in the number 
state field is given by 

+ ( - b 2  ['r112)MLM(M-I)(b21 "q 12)] (15) 

This formula represents the mean atomic inversion for the even-binomial 
state. Note that for Xl -- 0 we get the vacuum state and as M --> ~ and 
Xl --> 0 such that Mlx112 --> I otl 2, we get the result for the even-coherent 
state, which is equal to 

(Sz(OO)}ec = _l  sechlotl2[(l + bElot12)-i + (1 - IotlEb2) -I] (15') -g 
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lim [(Sz(~)>"l = I C.(~. X2) 
N- -L N J - 2  ' 

where X 2 = FNl(2ti-2g 2) and (7. are the Poisson-Charlier polynomials. For 
the even-binomial state, we get the expression 

lira [(Sz(~176 1 [Mnl ( 1 )  - ~ P2,,(Xl, M)C2. ~;  X 2 (17) 

which can be rearranged and summed in the form 

-N _1 ,x21-ql 2 + c l,-x2t-ql2 (18) 

In Figs. 3a and 3b we plot equations (15) and (18) against I ~q I for different 
values of M. We note that as we increase the value of M, the curve approaches 
saturation faster. However, the rate in the thermodynamic limit is slower than 
for the case of a single atom. 

5. CONCLUSION 

We have examined the Jaynes-Cummings model as well resonance 
fluorescence against the even-binomial state (the state which interpolates 
between the even-number state and the even-coherent state). 

For the Jaynes-Cummings model, which shows dynamical behavior, 
we discussed amplitude-squared squeezing, and showed that the squeezing 
is more pronounced at the time t = 0 than for the time t > 0. We also 
extended our discussion to include the sub-Poissonian distributions, where 
we examined the second-order correlation function gC2)(t) against the time "r. 
We found that the system shows bunching and antibunching behavior, but 
this depends upon the value of both M and "q. Finally, we considered the 
resonance fluorescence for the single-atom and the thermodynamic limit and 
we showed that the rate of change in the case of the thermodynamic limit 
is slower than the rate of change in the single-atom case. To complete our 
discussion we plot the inversion (6":(0) for the present model against the time 
"r. We notice that as the time 'r increases (see Fig. 4), the model shows 
pronounced collapse-and-revival behavior associated with Rabi oscillations. 
Also, as many different components in the summation get out of phase, 
collapse behavior of the inversion is possible. On the other hand, it is well 
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Fig. 4. The atomic inversion of ((6":(t)) + 1.0) for the Jaynes-Cummings model versus 

the time for M = 30 and M = I0 with ~ = 5. 

known that the revivals are a manifestation of the quantum nature of the 
interacting mode, which is mathematically reflected in the discrete summation 
(Eberly et  al. ,  1980; Narozhny et  al., 1981; Yoo et  al. ,  1981). 
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